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INTRODUCTION 
High-grade serous ovarian cancer (HG-SOC) is the fifth most lethal cancer in women and the 
most lethal of gynecological malignancies [1, 2]. Most often diagnosed at more advanced 
stages, a great challenge in treating HG-SOC is the apparent large number of disease subclasses 
based on genetic analyses [1, 3, 4]. Defective DNA repair mechanisms are characteristic of the 
disease and are most likely responsible for the extensive genetic abnormalities, most frequent 
of which are focal copy number alterations and epigenetic modifications [3, 4], confounding a 
systematic approach to successful treatment the disease. Furthermore, given the genetic 
plasticity of HG-SOC each patient can manifest one disease at diagnosis and other subtypes 
over time. At present, platinum-based therapeutic regimens are the most commonly used in 
the clinical settings of first diagnosis and post-relapse. Frequently a more aggressive platinum 
resistant form emerges.  
According to a seminal review by Vogelstein et al. the vast array of genetic events found in 
cancer all converge on three essential cellular processes, cell fate, cell survival and genome 
maintenance all regulated by twelve intracellular signaling pathways [5]. This is consistent with 
cancer having a “structure”. 
The hypothesis of our DoD proposal was to hypothesize that in spite of the vast range of genetic 
aberrations detected in HG-SOC, there must exist a unifying architecture that links biology to 
pathology across these tumors. By dissecting HG-SOC (diagnostic, recurrent and 
chemoresistant) into single cells for analysis of their phenotypes and signaling states, at the 
deepest possible resolution currently available, we will provide a unifying vision of ovarian 
cancer “systems biology” to bring about more informed changes to treatment modalities.  To 
accomplish this vision with HG-SOC, we are using a single cell technology, mass cytometry, or 
CyTOF (Cytometry by Time-Of-Flight), largely developed in our laboratory, for immunologic and 
cancer cell studies [6-9]. CyTOF uses antibodies conjugated to chelated metal ion tags, allowing 
for the simultaneous measurement of up to 40 parameters on a cell-by-cell basis, including 
surface markers and intracellular signaling proteins. CyTOF has been applied to complex tissues 
such as blood, bone marrow and, recently, ovarian ascites as well as single-cell suspensions 
derived from primary HG-SOC tumors. Over the past year, we have profiled the tumor 
compartment of 16 primary HG-SOC samples and profiled the immune compartment for 10 
samples with two panels of each comprised of 40 validated antibodies. We have demonstrated 
significant interplay between these two compartments. In addition, our lab and the Neel Lab 
have initiated the development of functional assays that will be used to understand which cell 
subsets harbor phenotypes associated with malignancy, metastasis, drug resistance and 
immuno-suppressive or immuno-enhancive characteristics. Furthermore, the Nolan Lab and 
Pe’er labs have developed a number of new data analysis tools. This information is essential for 
permitting early diagnosis, chemoprevention, risk assessment, development of new therapies 
and personalized treatment regimens for this deadly disease. An overview of our data from the 
last year will be presented. A brief update (bullet points) for each subtask will be given.  Within 
the body of the text, a detailed discussion will be provided for our progress over the last year, 
which continues to build on Task 1 as well as report on studies initiated for Task 2 and some 
exciting new findings in our tumor immune studies in Task 3. 
 
KEYWORDS 
Serous ovarian cancer, primary tumors, mass cytometry, single cell, antibodies, stem cell, 
immune compartment, clustering, correlation analyses, NK cells, macrophages 
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OVERALL PROJECT SUMMARY 
A. Background 
Single mass cytometry facilitates high-dimensional, quantitative analysis of the effects of 
bioactive molecules on cell populations at single-cell resolution [6-9]. Datasets are generated 
with antibody panels (up to 40) in which each antibody is conjugated to a polymer chelated 
with a stable metal isotope, usually in the Lanthanide series of the Periodic Table [6, 8-10]. The 
antibodies recognize surface markers to delineate cell types, such as immune, epithelial, 
mesenchymal, and intracellular signaling molecules demarcating multiple cell functions such as 
survival, DNA damage, cell cycle and apoptosis. By measuring all these parameters 
simultaneously, the signaling network state of an individual cell can be measured. The ultimate 
goal of this work, and beyond, will be to assign molecular status and function to cell subsets 
defined by 40 parameters at the single cell level. 
 
B. Overview of status of tasks 
Task 1 
Subtask 1a. Establish conditions for dissociation of solid tumors into single cells that maintain 
cells’ ability for functional signaling. Done with protocols transferred to Indivumed Inc, 
Hamburg Germany and now routine.  
Subtask 1b. Select a panel of extracellular modulators with which to measure signaling 
responses in both tumor cells and peripheral blood cells. A preliminary list of modulators has 
been made including but not limited to, TBFβ, BMP2, EGF, TGFα, heregulin, amphiregulinn, 
LPA, IL6, LPS, IL6, IGNa, and IFNg has been made and protocols for exposing single cell 
dissociation of primary tumors are in the process of being transferred to Indivumed. Work in 
progress is prioritizing this list. 
Subtask 1c. Select two panels of ~40 antibodies each. Done. We constructed two antibody 
panels in which the second was a variant of the first based on a mass cytometry experiment 
with six primary samples. The data from two independent experiments with each panel will 
be described in the body of the text. 
Subtask 1d. We have submitted the necessary HRPO (IRB) and the ACURO and are awaiting 
approval. Done 
Subtask 1e. Acquire 10 primary diagnostic (no treatment) ovarian tumor or ascites samples 
with matched blood samples. Done. We  have performed two mass cytometry experiments: i) 
six primary naïve tumors and ten HG-SOC ovarian cell lines described to be genetically most 
similar to primary HG-SOC [11]. 
Subtask 1f. Develop and apply new informatics tools and algorithms to the data generated from 
subtask 1d (Nolan lab and Pe’er lab at Columbia) (these efforts will be ongoing throughout most 
of the duration of this award) New tools developed: from the Nolan Lab: Citrus [12], X-shift 
(unpublished), Gatefinder (unpublished), Pe’er Lab: DREMI [13]. 
Subtask 1g. Pending data from subtask 1e modify antibody panels. Titrate any new antibodies 
(3-36 months. Anticipate continuous low-level activity for this subtask throughout the award 
period). See subtask 1c. 
Subtask 1h. Acquire >er than 150 primary diagnostic (Neel lab at UHN Toronto, and Berek at 
Stanford) serous ovarian cancer samples (from Neel at UHN and Berek at Stanford) and process 
for mass cytometry with modified panels (6-40 months).  Twenty five of these will be processed 
for xenotransplant (the Neel Lab currently has Research Ethics Board approval to conduct all of 
the tests described), requiring 10 mice for each subject tumor for 250 mice. In progress. 
Subtask 1i. Using SPADE and other algorithms, segregate and aggregate cell subsets in 
hierarchical pattern with intracellular and cell surface marker combinations. Using a new 
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deterministic K-nearest neighbor-clustering algorithm, we see important relationships 
between tumor cell subsets. This information will be presented in the body of the text. 
Subtask 1j. Building of subset space in relationship to therapy/outcome (6-48 months). We 
have not run enough samples and also for those we have run, not enough time has elapsed to 
fully evaluate patient outcome. 
Subtask 1k. Assess relative tumor-initiating properties of cell subsets from subtask 1h with 
established quantitative xenograft assay (Neel lab, 6-40 months). In progress. 
 
Task 2  
Previous work from the Nolan group showed that measuring the signaling responses of cancer 
cells to perturbations is more informative than assessing basal phosphorylation states. This task 
is focused on measuring signaling responses to extracellular perturbants such as growth factors, 
cytokines and drugs with relevance to ovarian cancer. In this task, the objective will be to 
uncover druggable pathways in serous ovarian cell subsets within and across primary samples. 
Task 2 has subtasks that are dependent and independent of Task 1. For Task 2 we have set up 
foundational studies to measure drug responses in HG-SOC cell lines. Specifically, we have set 
MTT assays (colorimetric readout) to measure the effects of drugs on proliferation, and growth 
in soft agar assays. We are evaluating carboplatin and paclitaxel and other investigational 
agents such as PARP inhibitors, JQ1 (an epigenetic modifier) and others that are under 
evaluation based on our primary tumor work in Task 1. Due to the relative immaturity of these 
studies, we will focus this report on the 1c, g and i. 
 
Task 3  
Although the presence of infiltrating cytotoxic T cells correlates with good prognosis, whereas 
regulatory T cells correlate with poor prognosis in SOC, there is limited understanding of the 
factors that contribute to the generation of these opposing responses. Understanding the 
mechanisms by which a given tumor microenvironment is able to promote immune surveillance 
could eventually lead to the clinical development of biomarkers that could select patients 
responsive to immune therapy. We will use mass cytometry to evaluate the tumor 
microenvironment in the same SOC samples as above utilizing antibodies against immune cell 
subsets. 
Subtask 3a. Assemble panel of extracellular modulators based on the known biology of the cell 
types that infiltrate ovarian tumors; immune cells, endothelial cells and stromal cells. Within 
our tumor panel, we included antibodies against CD45 (recognizes immune cells subsets), 
fibroblast activating protein (FAP) (recognizes stroma) and CD31 (recognizes tumor 
angiogenic component) to evaluate an enriched tumor component in the primary samples. 
We developed and validated a panel of 40 antibodies against the tumor immune system. This 
data will be discussed within the body of this report. 
Subtask 3b. Validate reagents to monitor signaling pathways mediated by extracellular 
modulators in cell lines and peripheral blood. (1-24 months). We have available a large 
repository of agents (growth factors, cytokines and drugs [14]) with which to characterize 
immune cell subsets from peripheral blood taken from HG-SOC patients. We are currently 
prioritizing which agents to use. 
Subtask 3c. Acquire 10 primary serous ovarian cancer samples with which to test response of 
tumor infiltrating cells to extracellular modulators identified in 3a. (Ongoing). 
Subtask 3d. Culture tumor-infiltrating lymphocytes from samples in Subtask 3c and characterize 
them for cytokine and chemokine production. (Ohashi lab 12-24 months). This subtask has 
changed and the Nolan Lab is generating enriched immune fractions from primary tumors 
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and establishing in vitro assays to determine immune-suppressive versus immune-enhancive 
activities of the tumor immune compartment. 
Subtask 3e: Acquire >er than 150 primary serous ovarian cancer samples (Neel lab at UHN 
Toronto, and Berek at Stanford) with which to test response of tumor infiltrating cells to 
extracellular modulators identified in 3a. (24-50 months). In progress. 
Subtask 3f. Culture tumor-infiltrating lymphocytes from samples in Subtask 3c and characterize 
them for cytokine and chemokine production. (Ohashi lab 24-60 months). See Subtask 3d. 
Subtask 3g: Using SPADE and other algorithms, segregate and aggregate tumor infiltrating cell 
subsets in hierarchical pattern with intracellular and cell surface marker combinations. Build 
computational models that correlate intracellular signaling responses in tumor infiltrating cell 
subsets with intracellular signaling responses of tumor cells with clinical outcomes. (12-60 
months) In progress and update will be in body of text. 
 
C. Description of studies and results 
C.1 As in our first year, we continue to pay close attention to obtaining samples of the highest 
quality, minimizing their ischemic time. With Indivumed Inc. in Hamburg we have highly 
stringent protocols in place that are now routine. All the primary samples that we evaluated 
were processed within 4 hours including transit time.  We believe these initial steps—though 
tedious—are critical to “trusting” the data from such precious samples as those obtained from 
patients with fatal diseases. As an illustration of the quality of our data Table 1, last two 
columns in red, demonstrates comparable viability of samples pre-freeze (trypan blue) with the 
viability post-mass cytometry experimentation (cisplatin [15]). All samples were processed in 
duplicate and some in quadruplet (discussed below) 

Table 1: Comparable viability of samples pre-freeze (trypan blue at 
Indivumed) with viability post-mass cytometry experimentation (cisplatin 
at Stanford). 

 
C.2a Experimental Design 
Experiment #1.  
Using the tumor antibody panel we included in our report last year, we performed an 
experiment with six primary HG-SOC samples and ten HG-SOC cell lines and one leukemic cell 
line as a negative control. We used the data to modify the tumor panel including more 
antibodies against surface proteins and included HE4, which has high relevance to HG-SOC a 
prognostic marker. This panel was used to characterize 10 primary HG-SOC samples and ten 
HG-SOC cell lines. For two tumors, we have in excess of 50 million cells and these tumors will be 
used later to isolate cell subsets for functional studies. For the purposes of clarity, we will 
discuss the data from the second experiment, although it should be pointed out, that results 
from the first experiment were reproduced in experiment #2. 
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In designing our experiments, we paid close attention to generating reproducible data. 
Therefore, multiple replicates were built in to the experimental design in order to compare 
sample runs within an experiment and across experiments. The latter being the same 
experiment performed on a different day.  
To reduce sample-to-sample variability, mostly due to staining with the antibody panel and 
differences in machine sensitivity, cells corresponding to each sample were barcoded using 6 
stable palladium isotopes with a method similar to that described previously [14]. In the 
barcoding scheme, each isotope is used in binary fashion, high for “1” and low for “0”. Hence, 
the barcode itself is a binary string that is can be decoded for each cell to determine the sample 
from which each cell is derived. For the purpose we developed an error-correcting 3-one 
barcoding scheme that both facilitates ease of debarcoding, and eliminates the majority of cell-
cell doublets. For the algorithm to be enabled, the maximum number of barcoded samples that 
can be combined is 20. This work is in press Zunder, Finck, et al. Nature Methods and as such is 
a valuable asset to those in the scientific community performing mass cytometry studies. 
For the experimental set-up, 1 x 106 cells from each sample or cell line were portioned into a 
well of a barcode plate. 
There were two plates, 
each with a duplicate, 
that were processed 
for mass cytometry 
with either the tumor 
antibody panel or the 
immune antibody 
panel (Table 2 and 3). 
The entire experiment 
was repeated the 
following week. 
Thus, in total there 
were eight “runs” all 
of which were 
normalized to bead 
standards [16] and 
debarcoded.  
 
C.2b Results from 
analyzing the tumor 
compartment 
The data from the 
replicates was for the 
most part 
superimposable. In the first of our ongoing analysis, we used a new unpublished K-nearest 
neighbor’s density-based clustering algorithm (Samusik, Nolan manuscript in preparation). Cells 
were clustered based on the co-expression of the markers shown by the grey bracket in Table 2. 
The clusters were arranged on a minimum spanning tree (MST) such that clusters most 
resembling each other were placed next to each other. In the analysis, cells from all the 
samples were clustered together and then each sample was viewed within the context of the 
others. Notably, one sample was a consistent outlier, Z393, and was actually a relapse sample 

 
Table 2: Antibody panel directed at tumor compartment 

 
Table 3: Antibody panel directed against immune compartment of tumor 

Protein Biology Isotope Protein Biology Isotope
FAP Stroma In113 Ki67 Cell cycle Sm152
CD31 Angiogenic In113 pRb(S807/811) Cell cycle Ho165
CD45 Immune Ce140 Cyclin B1 Cell cycle Nd148
E-Cadherin Epithelial Gd158 pHH3(S28) Cell cycle Yb176
CD73 Immune suppressive/Lineage plasticity Pr141 pATM(S1981) DDR Nd146
CD61 Stem cell marker Nd142 pH2AX(S139) DDR Sm147
CD90 Stem cell marker Nd144 pERK(T202/204) Proliferation Eu151
CD151 Adhesion Nd151 pAKT(S473) Survival Tb159
CD49f Stem cell marker Eu153 prpS6(S235/236) Protein translation Yb172
CD133 Stem cell marker Gd155 pBcl2(S70) Survival Nd150
CD10 Exopeptidase Gd156 pSTAT3(Y705) Pleiotropic Sm154
CD13 Exopeptidase Er168 pSTAT5(Y694) Pleiotropic Dy162
Endoglin TGFbRIII/Resistance/Self-renewal Dy163 p65 Rel-A(S529) Pleiotropic Sm149
CD24 Stem cell marker Dy164 MYC Yamanaka factor Dy161
CD44 Stem cell marker Er166 SOX2 Yamanaka factor Gd160
CA125 Ovarian specific Nd143 Non-P-b-catenin Self-renewal/Adhesison Er170
Mesothelin Ovarian specific Yb173 SNAIL Mesenchymal transition Gd157
Vimentin Intermediate filament/mesenchymal In115 PAX8 Lineage specific oncogene Er167
HE4 Protease inhibitor/biomarker for OC Tm169 pCREB(S133) Pleiotropic Yb174
cleaved PARP Apoptosis Yb171 p53(total) Cell cycle/Genome integrety Lu175

Protein Biology Isotope Protein Biology Isotope
CD235 Erythroid cells In113 HLA-DR DCs/B cells/monocytes In115
CD66b Granulocytes Dy161 CD33 Myeloid/Monocytes Gd158
CD45 Lymphoid/Myeloid Ce 140 CD14 Monocytes/Macrophages/DCs Gd160
CD19 B cells Gd 155 CD11b Grans/Monocytes/Macrophages/DCs Nd144
CD3 T cells Er170 CD11c Monocytes/cDC Gd157
CD4 T cells Nd145 CD68 M1 & M2 macrophages Eu167
CD8 T cells Nd146 CD163 M2 Macrophages Eu169
CD45RA Naïve T &  Teff cells Eu153 CD206 M2 Macrophages Nd150
CD25 T regs Tm169 pSTAT1(Y701) Transcriptional program Nd143
FoxP3 T regs Er166 pSTAT3(Y705) Transcriptional program Sm154
CCR7 Naïve & Tcm cells Tb159 pSTAT5(Y694) Transcriptional program Dy162
LAG3/CD223 Immunosuppressive Yb173 pERK(T202/Y204) Proliferation Eu151
PD-1 T cells (negative regulator) Lu175 prpS6(S235/236) Protein translation Yb172
ICOS Activated T cells, Co-stimulatory receptor Dy164 pMAPKAPK2(T334) Stress/inflammatory response Nd142
CCR6 Lymphocyte migration, Th1/Th2/Th17 differentiation Pr 141 pNFkB Inflammation/survival/apoptosis Sm149
CXCR3 Chemotaxis, Th1/Th2/Th17 differentiation Dy163 pH2AX(S139) DNA damage Sm147
CD56 NK cells Yb 176 pCREB(S133) Transcriptional regulation Yb174
CD16 NK cells/monocytes Ho 165 cPARP Apoptosis Yb171
CD123 pDCs Nd148 Ki67 Proliferation Sm152
BDCA2 pDCs Gd156
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and, as such provides hypothesis-generating information. Several exemplary MSTs will be 
shown below, although we have generated MASTs for each protein expressed by the tumor. 
HG-SOC is an epithelial cancer whose cells undergo dynamic and reversible transitions between 
multiple phenotypic states, the extremes of which are defined by the expression of epithelial 
and mesenchymal proteins. Two proteins that are hallmarks of these states are E-cadherin and 
vimentin respectively [17-20]. Figures 1 and 2 show the MSTs for E-cadherin and vimentin 
expression with striking exclusivity in their expression profiles. There are a few “bridge” areas 
of small clusters where both markers are co-expressed suggesting a transitional state between 
epithelial and mesenchymal. Notably, the relapse sample exhibits high vimentin expression 
consistent with a mesenchymal phenotype. 
 

 
Figure 1: Minimum spanning tree shows E-cadherin expression confined to one part of tree and mutually exclusive 
with vimentin. Scale is colored from 0 (blue) to 896 (red) and represents 0 to 95th percentile of the marker 
intensity distribution of individual cells. Each cluster is an average of the distribution of a marker. The yellow 
boundary demarcates the E-cadherin compartment of the MST. 
 

 
Figure 2: Minimum spanning tree shows vimentin expression confined to one part of tree and mutually exclusive 
with E-cadherin. Scale is colored from 0 (blue) to 3900 (red) and represents 0 to 95th percentile of the marker 
intensity distribution of individual cells. Each cluster is an average of the distribution of a marker. The green 
boundary demarcates the vimentin compartment of the MST. 
 
Another striking observation from the MSTs is that there is diverse expression (distribution and 
level) of both these proteins across the samples, and yet all the samples fall within a regiment 
of hierarchies. 
Included in the panel were three antibodies that recognize proteins important in the 
prognostication of HG-SOC, namely CA125, mesothelin and HE4 shown in Figures 3, 4 and 5. CA 
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125 is overexpressed in 80% of ovarian cancers. Serum CA 125 levels have been elevated in 50% 
to 60% of patients with stage I ovarian cancer and in 90% of patients with stage III/IV disease, 
related to release of CA 125 not only from cancer cells, but also from the inflamed peritoneum. 
In patients with elevated CA 125 levels, changes in biomarker levels have tracked tumor burden 
with greater than 90% accuracy. Persistent elevation of CA 125 following chemotherapy has 
correlated with residual ovarian cancer in >90% of cases, leading to approval of CA 125 by the 
US Food and Drug Administration (FDA) for detection of disease that has survived primary 
chemotherapy [21]. However, CA125 falls short in its ability to detect recurrent disease with 
enough lead-time to be useful. For this reason human epididymus protein 4 (HE4) has emerged 
as another serum marker and is FDA-approved to monitor recurrent disease [21]. Although 
serum levels of mesothelin did not offer additional advantages over CA125 and HE4 to 
monitoring HG-SOC [22], its restricted expression pattern to tumors, including pancreatic, 
compared to normal tissues have made it an attractive potential target for immuno-therapy 
[23-25]. Therefore, an understanding of expression patterns of these proteins at the single cell 
level will greatly enhance our understanding of their utility as clinical markers. Their levels in 
matched serum samples from the same patients is pending. The data in figures 4, 5 and 6 show 
that CA125 and mesothelin are co-expressed with the E-cadherin compartment whereas HE4 is 
more prevalent within the vimentin-expressing compartment. 
 

 
Figure 3: Minimum spanning tree shows CA125 expression. Scale is colored from 0 (blue) to 976 (red) and 
represents 0 to 95th percentile of the marker intensity distribution of individual cells. The yellow boundary 
demarcates CA125 co-expression with the E-cadherin compartment of the tumor. 
 

 
Figure 4: Minimum spanning tree shows mesothelin expression. Scale is colored from 0 (blue) to 2400 (red) and 
represents 0 to 95th percentile of the marker intensity distribution of individual cells. The yellow boundary 
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demarcates mesothelin co-expression with the E-cadherin compartment of the tumor. Sporadic clusters of 
mesothelin-expressing cells appear in vimentin part of MST. 
 

 
Figure 5: Minimum spanning tree shows HE4 expression. Scale is colored from 0 (blue) to 2400 (red) and 
represents 0 to 95th percentile of the marker intensity distribution of individual cells. The green boundary 
demarcates HE4 co-expression with the vimentin compartment of the tumor.  

 
A major goal of this project is to identify tumor-initiating cells as well as to establish a hierarchy 
for HG-SOC. Thus, a variety of stem cell markers were measured in each primary tumor (Table 
1). Exemplary MSTs show expression patterns for the Yamanaka factors cMyc, and Sox2. 
 

 
Figure 6: Minimum spanning tree shows cMyc expression. Scale is colored from 0 (blue) to 104 (red) and 
represents 0 to 95th percentile of the marker intensity distribution of individual cells. The green boundary 
demarcates cMyc co-expression with the vimentin compartment of the tumor. Note prominent cMyc expression in 
the relapse tumor. 
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Figure 7: Minimum spanning tree shows Sox2 expression. Scale is colored from 0 (blue) to 5 (red) and represents 0 
to 95th percentile of the marker intensity distribution of individual cells. Sox 2 has consistent expression patterns 
within both the E-cadherin (yellow circle) and vimentin (green circle) compartments of the tumor 
 
One of the main goals of this study is to delineate a cellular hierarchy for HG-SOC and relate the 
hierarchy to cellular functions such as tumorogenicity, metastasis and drug resistance. As 
mentioned above we have two large tumor samples with an excess of 50 million cells with 
which to do this. We will isolate cell subsets based on the information we gather from our 
tumor “landscaping study”. Practical considerations will also be taken into account, especially 
the number of cells within a cluster. In some cases there may be too few. As part of our analysis 
in understanding biologically informative cluster, we performed hierarchical clustering based on 
the correlation between the expressions of each marker (Table 1) across all the tumors. The 
analysis yielded four “buckets of cell types” as shown in Figure 7. Interestingly, stem cell 
markers were 
distributed across 
all four “buckets”. 
This is consistent 
with our data 
where stem cell 
markers such as 
CD133, CD61, 
CD49F etc, are 
distributed across 
many tumor cell 
subsets begging 
the hypothesis 
that “there are 
many ways to be a 
stem cell and that 
the combination, 
rather than any one stem cell marker alone, will be a critical determinant in regulating tumor 
function”.  
 
C.2c Results from analyzing the immune compartment 
The molecular diversity of HG-SOC presents a major challenge in designing effective targeted 
therapies and are more in line with per-patient designed strategies. Recent scientific evidence 
demonstrated that HG-SOC is an immunogenic tumor that can be recognized by the host 

 
Figure 7: Hierarchical Clustering Based on Correlations of Expression Levels of Markers 
Across all Ten Tumors 
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immune system [26]. However, in spite of 
this, immune evasion mechanisms persist 
[27]. Given the availability of agents that 
target such mechanisms (e.g anti-PD1, anti-
PDL1 and anti-CTLA4 FDA-approved in several 
clinical setting), HG-SOC could be a prime 
candidate for targeted immune therapies. 
Thus, an understanding of the immune cell 
types as well as the interplay with the tumor 
cells could have a profound impact on the 
choice of immune-therapy.  
One question of interest in trying to 
understand the relationship between the 
tumor and immune compartments was how they influenced each other’s size. Thus using, the 
tumor antibody panel in Table 1, we enumerated the cells in the CD45+ gate (immune 
compartment) and the CD45-/CD31-/FAP- gate and calculated their correlation. The plot in 
Figure 8 shows a strong anti-correlation between the immune and tumor compartments with a 
Spearman coefficient of -0.87. 
At first glance these data suggest that a large immune compartment can keep the tumor at bay, 
whereas, a tumor thrives with a smaller immune compartment. Is this intuitive? The complex 
role of the immune system in tumor development, defined as “immuno-editing” can be divided 
into three sequential phases; elimination, equilibration and escape [27]. Thus from a functional 
standpoint the tight correlation 
we observed between the size of 
the two compartments might not 
have been anticipated. Perhaps 
size is independent of immune 
cell function because the cells 
adapt to the tumor and vice versa.  
Furthermore, using the antibody 
panel in Table 2, in the same 
experiment, we profiled the 
tumor immune system in the 
same ten tumors that we profiled 
with the tumor antibody panel 
(Table 1). We used peripheral 
blood mononuclear cells (PBMCs) 
from a healthy donor as a 
comparator. However, the ideal 
situation will be to compare the 
tumor immune system with matched patient PBMCs. We are in the process of acquiring those 
samples. 
As with the tumor antibody panel, the data from the immune panel mass cytometry 
experiment was analyzed by X-shift k-nearest neighbor density-based clustering. 
Immune cell types within the tumor whose abundance was greatly increased compared with 
healthy PBMCs were macrophages as shown by the levels of CD68 (Figure 8) and natural killer 
(NK) cells (data not shown). There were significant increases in expression patterns of various 
markers including ICOS, pSTAT1, pSTAT3, pCREB and pNFkB. A detailed analysis is ongoing. 

Figure 9: expression of CD68, a marker for macrophages. Top left 
panel PBMCs and adjacent panel U937 cells. Relapse sample shown 
bottom left. Yellow circle demarcates tumor macrophages and blue 
the comparable clusters in healthy PBMCs. 

Figure 8: Tumor and immune compartment size are anti-
correlated with a Spearman coefficient of -0.87 
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With our mass cytometry profiling of the immune system in hand, we computed correlations 
between the sizes of the tumor compartments with specific immune cell subsets and found 
three NK cell subsets and one macrophage cell subset that correlated with the tumor 
compartment size (range of Spearman correlations 0.79 to 0.9). Remarkably, there was no 
correlation between the NK immune cells taken as an entity with the tumor compartment size. 
The identity of one NK cell cluster is shown in Figure 10 as an example. Of particular interest are 
the increases in pCREB, pSTAT1 and pNFKb (all targetable pathways) when compared to the 
comparable cell subsets within healthy PBMCs. When practically possible, we plan to cell-sort 
the immune cell subsets that correlate with size of the tumor compartment and develop in vitro 
co-culture assays to measure whether they are suppressive or permissive to  
tumor cell growth. 
C.2d Functional assays 
We have established the soft agar 
assay using the HG-SOC cell lines 
[11] as well as the MTT colorimetric 
proliferation assay. We have carried 
out the assays in the absence and 
presence of carboplatin, paclitaxel 
and JQ1 (data not shown). We are in 
a position to test our primary cells in 
these assays.  
As mentioned above we are also 
establishing co-culture experiments 
to ascertain tumor-immune cell 
function in vitro 

The Neel lab showed that 
from the initial rounds of CyTOF 
experiments, and by applying a 
novel algorithm developed by Dr. Pe’er, they identified several small populations of SOX2-
containing cells in primary serous ovarian carcinoma (SOC) samples. Given the critical role of 
SOX2 in marking several different normal and cancer stem cell types, they hypothesized that 
SOX2+ populations might be enriched for ovarian tumor-initiating cells (TICs). These 
populations could be distinguished by surface markers, and most tumor samples had one or 
two different clusters; occasional cases had three. Interestingly, only some clusters were 
marked by CD133 expression, potentially consistent with the incomplete correlation between 
CD133 levels and ovarian TIC that we had reported earlier.  

To be able to test the tumor-initiating capacity of SOX2+ cells, we developed a flow 
sorting strategy, using combinations of CD133, E-cadherin, CD90, and CD151, to enrich SOX2+ 
cells from different primary patient samples. Using this strategy, we screened eight different 
samples and sorted four of these into SOX2-enriched (up to 16-fold) vs SOX2-depleted 
subpopulations.  We then performed LDAs to test whether SOX2 enrichment is correlated with 
higher TIC frequency.  These experiments are now ongoing. 
In parallel, we have attempted to develop in vitro surrogate assays for TICs, to shorten the 
enormous turnaround time imposed by conventional LDAs in mice. We adapted Clevers’ 
organoid cultures and Schlegel’s epithelial cell feeder method for primary serous ovarian cancer 
samples. In parallel to the LDA experiments described above, we placed sorted cells from each 
population into these in vitro culture systems. To assess whether organoid and colony 
formation in vitro correlates with TIC capacity. We also plan to inject (unsorted) organoids and 

 
Figure 10: Example of Immune cell cluster in tumor that correlates with 
tumor cell size.  
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Schlegel colonies into NSG mice to assess further the relationship between in vitro growth and 
TIC capacity. 
 
C2e Conditional density-based analysis of T cell signaling in single-cell data, a new 
computational approach developed collaboratively by the Pe’er and Nolan Labs 
The premise of this study is that once we identify TILs and other drug resistant populations, we 
would characterize these cells and their potential vulnerabilities.  We expect different 
subpopulations in the tumor to acquire different mechanisms to sustain growth and evade 
apoptosis, each such population uniquely altering signaling. Understanding precisely how 
signaling is altered can suggest treatment options.  Therefore, we sought to develop a 
computational method that can characterize and compare signaling relations between 
subpopulations.  Since the cancer signaling terrain not sufficiently characterized, we validated 
our methods on healthy immune data. The healthy immune system is especially well-suited for 
validation because it includes many rare subpopulations, that respond to signal differently, 
whose fraction in the population is similar to that of the tumor initiating cells that we wish to 
detect in ovarian cancer.  
We developed methods for visualizing, identifying and scoring pairwise influences in single-cell 
data.  We observed that classical statistical methods, such as mutual information, are unable to 
distinguish between spurious correlations and significant correlations because the majority of 
cells in a particular measurement may be inert or contain very similar levels of key molecules. 
However, in cancer it is often the minority of cells, or rare subpopulations that drive drug 
resistance or metastasis. Our methods are based on the analysis of the conditional probability 

density between a pair of molecules, an 
independent X molecule and a dependent 
Y molecule. Our method, known as DREVI 
(conditional-Density Rescaled 
Visualization), enables the visual and 
mathematical characterization of 
signaling relations (Figure 1). 
 
Fig 11. DREVI plots reveal differences in signaling 
interactions between naïve and effector/memory 
cells. Signaling response functions are altered 
between naïve and effector/ memory cells. Vertical 
lines show the threshold of inflection of the Y-

molecule, which is altered between the two cell types. The white curves show the response function that cells follow.  
 
 

In addition, we develop a metric to quantify the 
strength of pairwise relationships known as 
DREMI (conditional-Density Resampled Estimate 
of Mutual Information), so that one can robustly 
compare this metric between sub-polulations in 
the same tumor,  between different conditions 
(drugged and undrugged), between tumors and 
between healthy and normal. Figure 2 shows the 
comparison of DREMI scores in a key-edge 
between two cell subtypes at various timepoints 
after T-cell receptor stimulation. 
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Fig 12. DREMI scores between 2-4 minutes show an increased dependence between pERK-pS6 in Naïve cells as 
compared to effector/memory cells.  
 
We show that our methods are able to tease out subtle differences in signaling between related 
subtypes of peripheral T cells, naïve and effector/memory T cells, upon antigen engagement 
(See Fig 1.). Fig. 2 shows increased dependencies between pERK and pS6 in naïve cells. We 
successfully validated that this leads to a stronger impact upon knockout perturbation of ERK in 
naïve cells. This work was recently published in Science [13]. Our next step is to apply these 
methods to identify altered signaling subtypes in ovarian cancer cells.  
 
D. KEY RESEARCH ACCOMLISHMENTS 

• Established two validated antibody panels against the tumor and immune cell 
compartments. 

• We conjugated 500ug of each antibody to ensure an adequate supply for analyzing 
future tumor specimens. 

• Landscaped tumor and immune compartments of 10 primary HG-SOC tumors 
• Landscaped ten HG-SOC cell lines selected from Domcke et al [11] 
• All data highly reproducible 
• Established MTT colorimetric proliferation assay 
• Established growth in soft agar assay 
• Developed new computational tools: X-shift (unpublished) CITRUS [12]DREMI [13], allof 

which will be used to analyze the mass cytometry data sets of HG-SOC 
 
E. CONCLUSIONS 

• See tumor diversity between samples, but within a limited phenotypic hierarchy 
– For both surface markers and signaling molecules 

• See mutually exclusive expression of E-cadherin and vimentin in “epithelial” and 
“mesenchymal” compartments 

• Stem cell markers scattered throughout compartments: are there many ways to be a 
stem cell? Functional analysis can help answer this 

• Great diversity in size of immune compartment across samples 
• Even with ten samples, we see a correlation between a tumor cell type with immune 

compartment size and immune cell type with tumor compartment size. 
• Size of tumor and immune compartments anti-correlated 
• Three NK cell subsets and one macrophage cell subset are positively correlated with 

tumor compartment size 
• No correlation exists between NK cells and size of tumor compartment 
• Highly regulated communication between immune and tumor compartments 
• New level of detail revealed by multi-parametric single cell mass cytometry. 
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TALKS 
Nolan 
Nolan: Washington University Department of Medicine Seminar, September 10, 2013, The 
Structure of Immunity and Cancer at the Single Cell level, St. Louis, MO 
 
Nolan: Advances and Perspectives on Flow Cytometry 2013, September 20, 2013, Mass 
Cytometry and Cell Cycle, Mexico City, Mexico (by Web Conference) 
 
Nolan: Nuclear Reprogramming and the Cancer Genome, Reprogramming: Induced Pluripotent 
Stem Cells, St. Catherine’s College, Oxford, England 
 
Nolan: Inserm Workshop 225, October 2, 2013, A Definable “Structure” for the Immune 
System and Cancers at the Single Cell Level, Bordeaux, France 
 
Nolan: American Society for Human Genetics – Medical Systems Genomics, October 26, 2013, 
Single Cell Systems-Structured View of Immunity & Cancer, Boston, MA 
 
Nolan: 2013 ACR/ARHP Annual Meeting, October 25-30, 2013, Emerging Technologies for 
Defining Immune Signatures, San Diego, CA 
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Nolan: 8th Cell Based Assay & Screening Technologies Conference, Nov. 6-8, 2013, A Definable 
“Structure” for the Immune System and Cancers at the Single Cell Level, San Francisco, CA 
 
Nolan: Columbia University Microbiology & Immunology, November 20, 2013, A Definable 
“Structure” for the Immune System and Cancers at the Single Cell Level, New York, NY 
Nolan: NCI ICBP Current Topics in Cancer Systems Biology: Tumor Cell Heterogeneity 
Workshop, December 2, 2013, A systems structured view of immunity and cancer, Vanderbilt 
University, Nashville, TN 
 
Nolan: American Society for Cell Biology (ASCB) Annual Meeting, December 14, 2013, 
Deconvoluting the complexities of cancer through physical sciences based single-cell 
approaches, New Orleans, LA 
 
Nolan: NCI Workshop on RAS: Synthetic Lethality Screens for Finding KRAS Vulnerabilities, 
January 9, 2014, Modern approaches to single cell analysis, Frederick, MD 
 
Nolan: Harvard Medical School – Program in Immunology Seminars, February 5, 2014, Mass 
Cytometry: Next generation flow cytometry, Cambridge, MA 
 
Nolan: Massachusetts General Hospital – Immunology Seminar Series, February 6, 2014, Mass 
Cytometry: Next generation flow cytometry, Charlestown, MA 
 
Nolan: Society for Hematopathology, March 2, 2014, New Technologies Applicable to Study of 
T-cell lymphomas: Taking Flow Cytometry to the next level – deciphering T-cell function, San 
Diego, CA 
  
Nolan: Penn Genome Frontiers Institute – Single Cell Symposium, March 11, 2014, A single cell 
systems view of immunity and cancer, Philadelphia, PA 
 
Nolan:  AACR Annual Meeting, April 7, 2014, A single cell systems-structured for cancer and 
immunity, San Diego, CA 
 
Nolan: Stanford Translational Research and Applied Medicine Program (TRAM), May 16, 2014, 
A Systems-Structured View of Immunity & Cancer, Stanford University, CA 
 
Nolan: U. Minnesota – Department of Biochemistry, Molecular Biology and Biophysics (BMBB), 
May 20, 2014, Mass Cytometry: Next generation flow cytometry, Minneapolis, MN 
 
Nolan: Academy of Clinical Laboratory Physicians & Scientists – Cotlove Award Lecture, May 30, 
2014, A structure for immunity and cancer at the single level, San Francisco, CA 
 
Nolan: 2014 MCMi Regulatory Science Symposium Keynote, June 2, 2014, A structure for 
immunity and cancer at the single level, FDA Headquarters, Silver Springs, MD 
 
Nolan: NCI Workshop on RAS Pathway Modeling and Quantitative Measurements, June 11, 
2014, Analysis of Signaling Networks at the Single Cell Level, NIH Campus, Bethesda, MD 
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Nolan: Harvard Medical School – Center for Cancer Systems Biology, June 12, 2014, Single-cell, 
tissue-organized, systems-structured views of immunity and cancer, Boston, MA 
 
Nolan: Fluidigm Symposium – To revolutionize Regenerative Medicine and Oncology by single 
cell analysis, June 17, 2014, Mass Cytometry: Next generation flow cytometry, Tokyo, Japan 
Nolan: Nature – Genomic Technologies and Biomaterials for Understanding Disease, June 23, 
2014. A definable “structure” for the immune system and cancers at the single cell level, San 
Diego, CA 
 
Nolan: Banbury Center – The Immune System and  Cancer, September 9, 2014, Single Cell 
proteomics and genomics at high scale, Cold Spring Harbor Laboratory, NY 
 
Nolan: Trinity College Symposium – Translating Imaging and other Novel Approaches, 
September 17, 2014, A structure for immunity and cancer at the single level, Oxford, England 
 
Fantl 
1. Fantl WJ. Invited speaker, ASH, New Orleans December 7th 2013. All Roads Lead to Rome:  
Phenotypic Channeling to Uniform Differentiation Structures from Diverse Leukemia Genotypes by 
Mass Cytometry. 

2. Fantl WJ. Invited speaker, 2014 Frontiers in Biomedical Research Symposium, Scripps Research 
Retreat, Palm Desert, CA, February 17th 2014. Single Cell Systems-Structured 
View of Immunity and Cancer. 

3. Fantl WJ. Invited speaker, Stratified Medicine Symposium, London, UK July 10th 2014.  Single Cell 
Structured View of Immunity and Cancer. 

4. Fantl WJ. Invited keynote speaker, Novel Technologies for in vitro Diagnostics, Leuven Belgium 
October 2014. Single Cell Structured View of Immunity and Cancer. 

Neel 

Neel B AACR Advances in Ovarian Cancer Conference, Sept 20, 2013: Cellular Heterogeneity in 
High-Grade Serous Ovarian Cancer. 
 
Neel B Banbury conference: April 21-23 2014.  Patient-derived xenografts for analyzing tumor-
initiating cells and drug response in high grade serous ovarian cancer.  
 
Neel B AACR Annual Meeting: Current Concepts in Organ Site Research Section.  April 2014 
A Systems approach to Serous Ovarian Cancer.  
 
G. INVENTIONS PATENTS AND LICENSES 
N/A 
 
H. REPORTABLE OUTCOMES 
N/A 
 
I. OTHER ACHIEVEMENTS 
N/A 
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